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ABSTRACT

It has been well established that equal loudness normalisation can produce a perceptually appropriate level balance
in an automated mix. Previous work assumes that each captured track represents an individual sound source. In the
context of a live drum recording this assumption is incorrect. This paper will demonstrate approach to identify the
source interference and adjust the source gains accordingly, to ensure that tracks are all set to equal perceptual
loudness. The impact of this interference on the selected gain parameters and resultant mixture is highlighted.

1 Introduction

Automatic mixing is a growing field. Started by [1], the
field began to take off when [2] proposed that mixing
multitrack audio can be viewed as a constraint problem,
which can be solved. From this point, mixing tech-
niques for video game audio [3] and automatic mixing
of musical content [4] have been developed. There are
many different approaches to automatic mixing. One of
the most common approaches the aim of understanding
of the mix process and limits of perception [5, 6], and
using this to model the intention of mix engineers [7].
This then allows for the creation of rule based mixing
systems [8], which more explicitly state the rules. Al-
ternatively, there are data driven approaches, mapping
audio features [9] to mixing decisions [10, 11, 12].

One of the primary focuses of many musical mix-
ing applications is level balancing of multiple sources.
[13] proposed setting a gain parameter for audio mix-
ing, such that all tracks are normalised to the same
perceived loudness, using gated perceptual loudness
model. This approach was then developed by [14],

where histogram of loudness methods were used to
improve the loudness model captured. [15] utilises
the equal loudness curves for calculating a perceptual
loudness of audio tracks.[16] instead uses the EBU R-
128 recommendation [17] and an exponential moving
filter. [18] and [19] both used auditory filters from a
masking model and the partial loudness measure and
apply loudness normalisation. [20] identifies the im-
portance of perceptual loudness of an automatic mix-
ing system. Both [21] and [22] presented reviews of
a range of loudness measures used within automatic
mixing approaches. It has been well established that
level balancing techniques that focus on normalising all
tracks to an equal loudness will produce a perceptually
preferable balance.

In practice, previous research relies on the assump-
tion that a loudness balance of a source and a signal
are equivalent. In the context of live music recordings,
such as that of a drum kit, it is common to have multiple
microphones recording simultaneously. This multiple
microphone situation can lead to signal interference and
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thus any automatic mixing approach will need to com-
pensate. [23] included source separation techniques in
the field of automatic mixing, to remix early recordings
of jazz music, which was developed further through the
use of neural networks in [24]. [25] proposed the use
of source separation technologies, directly in the use of
individual audio effects. Analysis of source separation
dataset, and how they can be used to inform intelligent
mixing practice was performed in [26].

The field of source separation is a large one, with topics
from unwanted background noise removal [27, 28],
musical structure analysis [29], to the use in automatic
transcription [30] or percussive harmonic separation,
and an excellent overview is presented in [31].

The aim of this paper is to present an approach for iden-
tifying the level of source interference and acknowl-
edge the impact that identifying this interference can
have on the resultant automated sound mixture. An
approach to separation and a comparison of gain calcu-
lation approaches is presented in Section 3. The dataset
used for this work is discussed in Section 4, and the
resulting source level identification and gain calcula-
tions are presented in Section 5. Section 6 will then
present the importance of source separation within a
live recording automatic mixing context where there
may be source interference.

2 Problem Formulation

A sound mixture can be defined as the sum of the nth
microphone X(n), and the calculated gain for that mi-
crophone G(n). We define a target loudness for a track
LT , and the calculated loudness of the nth microphone
is L(X(n)). In the typical approach, an audio mixture
Y is produced as N microphones combined.

Y =
N

∑
n=0

X(n)G(n) (1)

Gn =
LT

L(X(n))
(2)

However, in the case where the source and the signal
cannot be view as equivalent, such as the case where
there is some source interference, the perceived loud-
ness of source S(n) is given as

L(S(n)) =
N

∑
n=0

L(S(n,X(n))) (3)

Where S(n,X(n)) represents the source S(n) found in
X(n).

3 Interfering Source Identification

The Blind Source Separation (BSS) Evaluation Toolbox
presents a performance measurement of source separa-
tion [32]. A recorded signal is defined as a combination
of sources such that

X(n) = S(n)+ einter f erence + enoise + earti f act (4)

Where e represents some additional signal, either inter-
ference, noise or artifact. The signals are decomposed
into these four relevant aspects and can be used to
approximate a set of source separation performance
measures. In this work, we are interested in the Source
to Distortion Ratio (SDR)

SDR := 10log10
||S(n)||2

||einter f erence + enoise + earti f act ||2
(5)

As such, the SDR can be viewed as the ratio of the
source audio signal and all other interfering signals.
Based on the assumption that each of the close mi-
crophones can be used as an approximation for the
individual sources, we can calculate the loudness of
each sound source in the overhead microphones, using
the SDR measure from the BSS Evaluation toolbox.

4 Dataset

Live drum mic recordings was used for demonstration.
Analysis was performed using the ENST dataset [33],
an audio-visual drum dataset of multichannel recording
of drums. All drum recording, except the single hit
recordings, were used from the ENST dataset. This
provided 210 different drum recordings, from three
different drummers, with an average length of 30s and
a standard deviation of 21s. A total of 1.7 hours of
continuous recording of 8 channels of audio. Only one
third of the dataset (one drummer) used the Tom 3, and
as such, all results for Tom 3 are taken over the subset
of data where it was used.

5 Results

The ENST dataset [33] was used to analyse the level
of each signal source in each of the two overhead mi-
crophones. Figure 1 presents a boxplot sum total SDR
of each sound source in the two overhead microphones.
It is possible for the SDR of a single source to be over
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Fig. 1: Box plot of loudness of each source contained
within both overhead microphones

0dB, since we are combining the SDR of the two over-
head microphones together, to identify the overall loud-
ness of the source in the overhead combination. It is
clear from this result, there is a high proportion of each
other drum source in the overhead microphones. The
impact of this in calculating a gain for an automatic mix-
ing system is presented in Figure 2, and summarised
in Figure 3, where the box plots of the calculated gain
differences of each of the sources are presented.

It can be seen that the impact on calculated gains is
large. The median difference for the two overhead mi-
crophones is 8.7dB and 10.6dB. This is an extreme
difference in the calculated gains applied to the over-
head microphones, and will have a significant change
on the balance of the mix.

The impact on each of the other individual sources can
be even greater, with the snare and hi hat microphone
gains changing the most (11.0dB). Figure 1 shows the
snare and hi hat are the loudest sources identified in the
overheads. Furthermore, this intuitively makes sense,
as the snare and hi hat sounds will commonly be the
loudest sources on a drum kit, and will be clearly heard
in the overheads, compared with the kick drum, where
only a difference of 2.6dB is made.

Fig. 2: Box plot of gains calculated between each of
the two approaches.

The left item, in red, represents the calculated gains without
considering microphone interference. The right box, in blue,

represents the calculating gains, compensating for the calculated
loudness of each source, using the BSS evaluation toolbox.

Fig. 3: Difference in gain calculated each source, com-
paring with and without BSS
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6 Conclusion

The existing issues with typical automatic gain balance
mixing approaches have been identified. Primarily case
where there is natural acoustic signal interference. The
use of BSS, to resolve this issue, may not yield perfect
results, but will improve the ability to at least identify
the level of interference, to allow for the appropriate
compensation. It has been shown that, in the case
of drums, a gain change of up to 11dB of sources is
identified. It is clear that this level of difference will
make a significant impact to the perceptual balance of
any drum mix
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