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This paper presents a systematic review of semantic music production, including a meta-
analysis of three studies into how individuals use words to describe audio effects within
music production. Each study followed different methodologies and stimuli. The SAFE project
created audio effect plug-ins that allowed users to report suitable words to describe the perceived
result. SocialFX crowdsourced a large data set of how non-professionals described the change
that resulted from an effect applied to an audio sample. The Mix Evaluation Data Set performed
a series of controlled studies in which students used natural language to comment extensively
on the content of different mixes of the same groups of songs. The data sets provided 40,411
audio examples and 7,221 unique word descriptors from 1,646 participants. Analysis showed
strong correlations between various audio features, effect parameter settings, and semantic
descriptors. Meta-analysis not only revealed consistent use of descriptors among the data sets
but also showed key differences that likely resulted from the different participant groups and
tasks. To the authors’ knowledge, this represents the first meta-study and the largest-ever

analysis of music production semantics.

0 INTRODUCTION

Semantic analysis enables novel methods of interfacing
with music production technologies, in which users can
manipulate the processing by simply describing percep-
tual changes to be applied, for example, “make this sound
‘brighter.”” Three studies attempted to gather a large num-
ber of terms from a large number of users, such that in-depth
analysis could be performed [1-3]. Together, the data sets
provided a total of 40,411 audio examples of 7,221 unique
descriptors from 1,646 participants. Each of these stud-
ies used different methodologies, stimuli, and participants.
This presents an opportunity for cross-analysis to determine
whether the semantics is maintained with different groups
of people, for different content and different music pro-
duction tasks. It also allows aggregation to deliver the first
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meta-study of music production semantics and the largest
study of music semantics to date.

The SocialFX study, presented in [ 1], is a combined study
in which participants were asked to listen to an audio track
both before and after an audio effect was applied. They were
asked to both free-text words that describe the effect and
select words from a short list, which had previously been
submitted by other participants, as a form of validation or
agreement. The study was conducted as an online listening
test, through Amazon Mechanical Turk, where participants
were paid to take part in the study. A total of 481 partic-
ipants were included for equalization, 513 participants for
reverberation, and 239 participants for dynamic range com-
pression. It is not known whether there was any intersection
between participants in each of these studies.

The SAFE data set, presented in [2], developed a range
of four open-source audio effect Virtual Studio Technology
plugins, equalizer, reverb, dynamic range compressor, and
distortion effect. Participants were then provided the plugin,
and they could change any effect parameters on any audio
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track and were free to describe the audio effect using any
words that they felt suitable. Participants were also able to
recall effect parameters from the word-parameter database.
There were 263 unique users of the audio effects.

The Mix Evaluation Data Set (MEDS), presented in [3],
collected 181 different mixes of 18 different songs, pro-
duced by 150 unique individuals. Subjective evaluations of
the mixes were then produced multiple times for each mix,
which included a free-text description of the mix and a rat-
ing, when compared with other mixes of the same song.
The free-text annotations were then analyzed and summa-
rized in [3], to relevant individual semantic terms relating
to the entire mix. All data sets presented are openly avail-
able. A more in-depth review of each of the three data sets
is presented in SEC. 2

Herein, this paper presents a meta-analysis of these stud-
ies. Analysis showed strong correlations between various
audio features, effect parameter settings, and semantic de-
scriptors. Meta-analysis not only revealed consistent use of
descriptors among the data sets but also showed key dif-
ferences that likely resulted from the different participant
groups and variations within the completed tasks.

The paper is organized as follows. SEC. 1 reviews the
field of semantic music production. SEC. 2 describes in fur-
ther detail the three data sets that were used. SEC. 3 presents
a secondary analysis based on combination of the three data
sets. SEC. 4 describes the meta-analysis approach that was
taken and presents the results of this analysis. SEC. 5 dis-
cusses the findings, including a critique of the work. Finally,
SEC. 6 presents overall conclusions, recommendations, and
directions for further work.

1 BACKGROUND

Semantics can be introduced or applied in music produc-
tion in the following ways:

¢ Creating music with meaningful controls,
e Shaping or changing music in a meaningful way, and
e Extracting meaning from music.

Many studies that elicit semantic descriptors of perceived
changes in audio associated with the application of audio
effects have been performed, as summarized in Table 1. In
a series of papers, Brookes and Williams [4—6] investigated
means to manipulate brightness, warmth, and softness. In
[7], different audio effects in music production were as-
sessed to determine how they can manipulate and influence
perception of brightness and warmth. [8] developed an ef-
fect to independently control brightness and warmth. In
[9], brightness and sharpness in distorted guitar content
was explored. In [10] and references therein, the punch as-
sociated with a track was investigated, including the ability
of dynamic range compression to make a track punchier.
Similarly, [11] explored use of the semantic term aggressive
in conjunction with a dynamic range compressor.

Howeyver, all of the above-mentioned studies dealt with
one or two attributes in isolation. Another approach was pre-
sented in [12], which attempted to quantify a large number
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of semantic terms related to mix production and produced
a table of frequency ranges and their associated semantic
terms. However, this was based entirely on descriptions
by practicing sound engineers, without any formal analy-
sis that verified whether the descriptions were accurate or
whether the terms were widely used.

Descriptive language is frequently used to refer to the
way in which a mix or component in a mix is perceived
[13]. Developing computational models of such timbral ad-
jectives will advance knowledge of how the brain perceives
audio signals and provide intuitive means for modeling pro-
duction decisions and manipulating timbre.

In audio engineering, there is a corpus of terms that are
widely accepted as having correlated spectral properties, re-
ferred to as a vocabulary of descriptors. Most experienced
audio engineers and musicians tend to be in agreement re-
garding the perception of these descriptors, and such terms
have formed the basis of audio effect presets across a wide
range of software tools.

[14] provides a review and summary of a range of dif-
ferent audio descriptors commonly used to describe sound.
Table 2 shows a selection of a list presented in [15]. It
provides a review of spectral descriptors found in audio
engineering literature, with their corresponding frequency
ranges. Descriptors in this list are mostly associated with
equalization effects and characterized by amplification or
attenuation applied to a specific band in the magnitude
spectrum of a sound.

As described in [16-19], descriptive language in music
production can be categorized using a number of schemata.
This allows for attribution of formal meaning to descrip-
tions of sound, and separate potentially context-specific
terms, such as those associated with an instrument, from
terms that represent emotional or musically motivated re-
sponses.

Koelsch proposed a taxonomy for musical semantics
in [20], in which subjective responses to musical sounds
are grouped as having extra-musical, intra-musical, or mu-
sicogenic meaning. Extra-musical or designative meaning
refers to associations between a musical sound source and
non-musical context. Koelsch described three dimensions
of extra-musical meaning: iconic referring to metaphorical
comparisons between the sound and a non-musical quality
(e.g., warm, sharp), indexical referring to the expression
of an emotional state (e.g., joy, sadness), and symbolic re-
ferring to cultural and social references (e.g., a national
anthem, relation of musical motives to an ethnic group).

Most of the semantic terms in music production fall into
the iconic subcategory. This includes the schema from [21]
for subjective responses to musical stimuli: onomatopoeia
to represent terms that mimic the acoustic sound source,
sound source to represent situational factors of the source
(e.g., instrument, environment, etc.), and adjectives for a
subjective, figurative description of the sound. A visual
representation of this hierarchical taxonomy is presented in
Fig. 1.

An alternative categorization of timbral adjectives is pro-
posed in [22], which categorized terms based on the seman-
tics of spatial audio processing [23, 24]: technical, referring
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Table 1. An overview of studies of semantics describing audio effects. The terms column either lists the terms used in the study, for
less than five terms, or the total number of unique terms used within the study. Some papers did not have associated specific terms but
instead used gestural interfaces, so no terms were listed. Other terms used semantic web associates and, as such, could interrogate any
number of terms. Some studies were review or combination studies, so they did not have participants or sample numbers to reference.

No. Partic-  No.
Audio Effect Terms Approach Project ipants Samples Reference
Compression 976 Perceptual study SAFE 963 2,154 [30]
Compressor Aggression, distortion ~ Perceptual study 17 2 [11]
Compressor - Gestural interface 20 1 [45]
Compressor Rock, jazz, hiphop, Perceptual study 26 4 [46]
EDM

Compressor Punch Semantic rules to feature representation [47]
Compressor Clarity, punch Signal analysis 8 2 [48]
Compressor Semantic web feature analysis [43]
Equalization Review of semantic terms and frequency [49]

content
Equalization 681 Perceptual study SAFE 416 2,248 [30]
Equalization Bright, warm Perceptual study SAFE 59 1,113 [50]
Equalization Bright, warm Perceptual study SAFE 40 10 [32]
Equalization 324 Perceptual study SocialFX 633 3 [26]
Equalization >6 billion Machine learning word mapping [51]
Gain Balance Perceptual study 25 5 [52]
Gain Balance Signal analysis [53]
Reverb 747 Perceptual study SAFE 582 1,320 [30]
Reverb 3388 Perceptual study SocialFX 658 3 [28]
Reverb 9,161,912 dictionary Semantic web mapping 265 [54]
Reverb Semantic rules to feature representation [55]
Spatialization . Semantic representation of metadata [56]
Distortion 271 Perceptual study SAFE 135 444 [30]
Compressor, 618 Perceptual study SAFE 263 2,694 [2]
distortion,
equalizer, reverb
Compressor, 394 Combine study mapping SocialFX 432 4 [29]
distortion,
equalizer, reverb
Bitcrusher, Bright, warm Perceptual study 26 7 [7,57]
distortion,
COMmpressor,
equalizer
Mixing systems Semantic rule to audio feature [58]

representation
Mixing systems Semantic web audio feature term modeling [59]

SAFE
Mixing systems Review paper [60, 44]
Mixing systems Semantic web audio feature mapping [39]

| |
Extra-musical Intra-musical Musicogenic
| |
‘ Iconic Indexical Symbolic
| |
onomatopoeia ’ ‘ Sound ‘ Adjective
Source

550

Fig. 1. The term classification hierarchy, proposed by [21] and [20].
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to audio effect parameters of low-level audio features [25];
spatial, referring to position of a sound in an acoustic en-
vironment; or timbral, referring to perceptual dimension of
timbre, often described using a metaphor.

1.1 Agreement Measures

The extent to which natural language can be used to pro-
vide novel methods of modifying sound is determined by
the level of exhibited agreement within a term. When many
test subjects use a term for a common purpose, it suggests
there is a consensus on its perceptual representation. Terms
with high consensus can be utilized to perform representa-
tive modifications of sounds using semantic interfaces.

In [13], participants were played randomized samples
from the Freesound database' and asked to complete a sur-
vey attributing descriptive terms to each of the sounds. If
the same sample was described using the same term by
multiple participants, there must be a strong association
between the two. Bright, resonant, and harsh all exhibited
strong agreement scores, whereas open, hard, and heavy all
showed low subjective agreement.

1.2 Similarity Measures

Determining the extent to which sound descriptions are
similar allows for identification of synonyms (e.g., “Are
bright and sharp timbrally equivalent?”), labelling of pa-
rameter scales (e.g., “Does something get warmer as it gets
less bright?”’), and recommendations for new settings based
on current preferences (e.g., “It looks like you’re trying to
make this sound brighter. Try adjusting these parameters
for better results.”). Similarity measures can be divided
into Timbral and Contextual Similarity.

2 THE DATA SETS

The three data sets analyzed herein are SocialFX, SAFE,
and MEDS, each of which is described and outlined in this
section.

2.1 SocialFX Data Set

The SocialFX database [1] contains the data from So-
cialEQ [26], Reverbalize [27], and an additional dynamic
range compression study. The data set is very large, but
because entries were crowdsourced using Amazon’s Me-
chanical Turk platform, it is likely that only a small frac-
tion of the contributors are expert users. Participants were
removed from the study if too many default answers were
submitted or if the participant was inconsistent, based on
repeated tests.

Users contributed terms to the data set by positioning
sounds in a reduced-dimensionality space, which corre-
sponds to audio effect parameters. The top 50 SocialFX
terms are presented inTable 3. Similar to the SAFE data set
(SEC. 2.2), audio effect parameters are available for each
instance, along with metadata extracted from the user.

'http://freesound.org.
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Table 2. An excerpt from De Man [15].

Term Range Reference
Air 5-8 kHz [61,p. 119]
10-20 kHz [62, p. 99]
10-20 kHz [63, p. 211]
11-22.5 kHz [61, p. 26]
12-15 kHz [64, p. 103]
12-16 kHz [65, p. 43]
12-20 kHz [62, p. 25]
12-20 kHz [66, p. 108]
12-20 kHz [67, p. 86]
Anemic Lack of 20-110 Hz [63, p. 211]
Lack of 40-200 Hz [61,p. 119]
Articulate 800-5,000 Hz [61,p. 119]
Ballsy 40-200 Hz [61,p. 119]
Barrelly 200-800 Hz [61, p. 119]
Bathroomy 800-5,000 Hz [61,p. 119]
Beefy 40-200 Hz [61, p. 119]
Clarity 2.5-4 kHz [67, p. 86]
2.5-5kHz [68, p. 484]
3-12 kHz [63, p. 211]
4-16 kHz [61, p. 26]
Fat 50-250 Hz [63, p. 211]
60-250 Hz [61, p. 25]
62-125 Hz [65, p. 43]
200-800 Hz [61,p. 119]
240 Hz [68, p. 484]
Presence 800-12,000 Hz [61, p. 119]
1.5-6 kHz [62, p. 24]
2-8 kHz [65, p. 43]
2-11 kHz [63, p. 211]
2.5-5 kHz [68, p. 484]
4-6 kHz [61, p. 25]

The notion of inter-subject descriptor agreement was ex-
plored in [26], in which agreement for a descriptor d is
represented by overall variance across participants for each
of the dimensions in some statistical representation. For ex-
ample, if all of the audio effect parameters from instances
of users trying to make a sound brighter are observed, to
what extent do each of those parameters vary?When taking
the covariance matrix of these statistical parameters, this
measurement is equivalent to the trace:

M N-1

1
trace(X)y = v Z Z(xn,k - )’ €))

k=0 n=0

where N is the number of instances of the descriptor in the
data set, M is the number of statistical parameters, x;, ; is
the k" parameter for instance n, and L is the mean of the
k'™ parameter across all instances of d. To measure agree-
ment, the authors also take into consideration the number
of entries made into the data set by dividing the natural log
of the number of instances by the trace:

_ InN
7 trace(T),
SocialEQ [26], Reverbalize [28, 27], and Audealize [29]
took a similar approach to personalization of audio ef-
fect parameter spaces. Through repeated trials on exam-

ple sounds, users taught the systems their own terms and
parameter-space representations. Descriptive terms were

(@)
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Table 3. The top 50 terms from the SocialFX [1] data set, sorted by number of instances.

N Term Total Comp EQ Rev N Term Total Comp EQ Rev
1 Echo 2,396 118 0 2,278 26 The 397 22 1 374
2 Loud 1,308 261 21 1,026 27 Large 396 17 2 377
3 Tin 1,212 89 28 1,095 28 -Like 377 7 0 370
4 Low 1,154 92 16 1,046 29 And 361 21 10 330
5 War 1,137 147 60 930 30 Louder 350 156 0 194
6 Warm 1,057 135 59 863 31 Con 348 13 1 334
7 Church 1,033 8 0 1,025 32 Distorted 343 43 0 300
8 Big 934 55 1 878 33 Full 337 70 1 266
9 Spacious 855 62 0 793 34 Room 332 33 0 299
10 Distant 848 29 2 817 35 Nice 329 30 3 296
11 Deep 787 31 6 750 36 Drum 324 11 1 312
12 Muffle 634 85 4 545 37 Hollow 323 14 2 307
13 Muffled 623 81 4 538 38 Sad 323 3 21 299
14 Hall 584 7 0 577 39 High 319 37 4 278
15 Clear 567 126 8 433 40 Strong 316 40 1 275
16 Ring 537 24 7 506 41 Organ 315 0 0 315
17 Soft 533 102 26 405 42 Way 294 8 0 286
18 Big- 517 13 0 504 43 Pleasant 293 32 4 257
19 Bas 506 46 3 457 44 Under 286 7 1 278
20 Far 473 9 0 464 45 Old 282 18 36 228
21 Bass 461 43 1 417 46 Harp 277 55 8 214
22 Like 450 9 0 441 47 Smooth 277 13 9 255
23 Distort 442 62 0 380 48 Sound 277 31 1 245
24 Nic 432 34 6 392 49 Metal 270 23 2 245
25 Echoing 415 12 0 403 50 Sharp 257 55 7 195

Comp = compressor; Dist = distortion; EQ = equalizer; Rev = reverb.

then rendered in a 2D space, so, for example, users could
control the amount of warmth or boominess of a signal.

2.2 The SAFE Data Set

Crowdsourced methods use templates from large data
sets of descriptive terms to modify the timbre of a sound
using audio effects. In [30, 2], terms are collected for equal-
ization, dynamic range compression, distortion, and reverb.
The data is sourced from users describing transformations
that are made by the digital audio workstation plugins when
applied to their own audio signals, within their own produc-
tion workflow. Each term has a corresponding parameter
set, audio feature set, and table of user metadata. Parame-
ters can then be set based on average settings assigned to
terms given by users. The system partitions the data, afford-
ing more specific presets based on external factors, such as
the sound’s genre and instrument.

This method was extended in [31] by allowing users to
navigate the meaning of each term. Clustering was applied
to areduced dimensionality representation of the descriptor
space, which was navigated using a machine learning auto-
encoder. This data has also been used to design semantically
controlled audio effects [32], an audio processing chain
generator [33], and a timbral modification [34].

In [2], parameter variance was used to cover the distri-
bution of feature values for each term. Descriptors were
mapped from various audio effect transforms into a com-
mon timbre space. The popularity of each descriptor was
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based on a coefficient representing the term as a proportion
of the data set, Eq. (3).
Pa = cqg X In —Dn_(ld) , 3)
d=o 1(d)
where n(d) is the number of entries for descriptor d, and
cq is the output of Eq. (1) when applied to the reduced
dimensionality timbre space [2].

A comprehensive similarity matrix based on the term’s
context can be devised using techniques taken from natural
language processing. In [2], a Vector Space Model was used
to identify similarity of each term in a database, based on the
number of entries from each audio effect. Fig. 2(a) shows
the resulting pairwise similarities of the high-generality
terms.

The most similar term pairs were bass and strong, deep
and sharp, and boom and thick. Conversely, the similarity
of transform types based on their descriptive attributes can
be calculated by transposing the occurrence matrix in the
Vector Space Model. Fig. 2(b) shows similar terms were
used to describe equalization and distortion, whereas the
equalization and compression vocabulary is more disjoint.

Timbral similarity between data points or clusters is often
computed using audio features or audio effect parameters.
One approach is to apply agglomerative clustering to a data
set of labelled feature sets and then measure the cophe-
netic distance (the magnitude of the first common branch)
between two data points. These cophenetic distances are
shown in dendrogram plots, comparing the distances of
terms for each audio effect in Fig. 3 using terms taken from
the SAFE data set [30].

J. Audio Eng. Soc., Vol. 70, No. 7/8, 2022 July/August
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Table 4. The top 50 terms from the SAFE [30] data set, sorted by number of instances.

SEMANTIC META-STUDY

N Term Total Comp Dist EQ Rev N Term Total Comp Dist EQ Rev
1 Warm 582 9 26 542 5 26 Gentle 11 6 2 1 2
2 Bright 531 4 5 521 1 27 Thick 11 2 2 6 1
3 Punch 34 27 1 6 0 28 Crushed 10 7 2 1 0
4 Room 33 1 0 2 30 29 Damp 10 1 1 1 7
5 Air 31 0 0 18 13 30 Harsh 10 1 4 5 0
6 Crunch 29 0 27 0 2 31 Low 10 0 0 10 0
7 Smooth 22 15 3 2 2 32 Presence 10 2 0 8 0
8 Vocal 22 16 1 4 1 33 Space 10 0 0 1 9
9 Clear 21 3 0 18 0 34 Tin 10 0 2 7 1
10 Subtle 21 6 4 1 10 35 Acoustic 9 4 2 3 0
11 Bass 20 3 4 13 0 36 Comp 9 9 0 0 0
12 Fuzz 19 1 17 1 0 37 Dream 9 1 0 0 8
13 Nice 18 12 0 4 2 38 Flat 9 5 1 3 0
14 Full 16 3 0 9 4 39 Hall 9 0 0 0 9
15 Boom 15 2 2 9 2 40 Kick 9 4 1 4 0
16 Crisp 15 1 3 11 0 41 Loud 9 6 2 1 0
17 Sofa 15 15 0 0 0 42 Present 9 3 0 6 0
18 Soft 15 5 1 4 5 43 Sharp 9 2 1 4 2
19 Big 13 1 0 1 11 44 Small 9 0 0 0 9
20 Clean 13 1 0 11 1 45 Bite 8 0 0 8 0
21 Thin 13 1 0 12 0 46 Click 8 1 0 7 0
22 Box 12 1 0 8 3 47 Cut 8 2 0 6 0
23 Deep 12 3 1 6 2 48 Dark 8 0 0 4 4
24 Tight 12 7 0 4 1 49 Echo 8 0 0 0 8
25 Drum 11 3 0 2 6 50 Glue 8 8 0 0 0

Comp = compressor; Dist = distortion; EQ = equalizer; Rev = reverb.

Resulting clusters are intended to retain perceived latent
groupings, based on underlying semantic representations.
In the EQ data [Fig. 3(c)], for example, terms associated
with boosts in high-to-mid—frequency and high-frequency
bands, such as tin, cut, clear, and thin are grouped together,
whereas a cluster associated with boosts to low and low-

1
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(a)

to-mid bands are separated with high cophenetic distance.
Fig. 4 shows that the spectral profiles of terms within the
same cluster are highly correlated. Curves in the first cluster
generally exhibit amplification around 500 Hz with a high-
frequency roll-off. Similarly, terms in the second cluster

Compressor 1

Distortion 2

EQ 3

(b)

Reverb 4

1.00
0.95
0.90
0.85
0.80
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0.70
0.65
0.60
0.55
0.50

Fig. 2. Vector-space similarity with regard to (a) high-generality terms and (b) transform-classes. A cell with a high value (light shade)
means that the horizontal term/transform is very similar to the vertical term/transform, with regard to the transforms/terms related to it.

EQ = equalizer.
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Fig. 3. Dendrograms showing term clustering based on feature space distances for each transform class (from [2]): (a) compressor, (b)

distortion, (c) equalizer (EQ), and (d) reverb.

exhibit high frequency boost (>5 kHz) with attenuated low
frequencies.

2.3 MEDS

The MEDS consists of mixes gathered in a real-life, eco-
logically valid setting and perceptual evaluation thereof,
which can be used to expand knowledge on the mixing
process. The data offers many opportunities for music pro-
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duction analysis, some of which are explored here. In par-
ticular, ratings and comments were collected by a wide
range of listening test participants and subsequently anno-
tated and analyzed. For instance, one finding was that more
experienced subjects commented more on negative aspects
(things that they thought could be improved) instead of on
strengths, that they were more specific in their assessments
of mixes, and that they were more likely to agree with one
another.
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(b) thin, clean, cut, click, and tin

Fig. 4. Two clusters of terms with similar equalization curves (thin lines) with their average (thick line). (a) Warm, bass, boom, box, and

vocal. (b) Thin, clean, cut, click, and tin.

At the time of [3], MEDS contained around 20 multitrack
recordings, most of them freely available. On average, there
were ten mixes available for each of these songs, with the
complete digital audio workstation session, so that the mix
could be recreated and analyzed in detail [35]. Thus, [3]
contains 180 mixes including parameter settings, close to
5,000 preference ratings [36] and free-form descriptions
[12], and a diverse range of contributors from five different
countries. It has since grown to include data from [37, 38]
and an additional, unpublished study.

This allows for extensive research into the attributes of
music production that are often lost when session informa-
tion is discarded. By including deep metadata, the authors
provide training data for fully automated music production
systems [39].

3 SECONDARY ANALYSIS

3.1 Combining Data Sets

These three data sets were combined in order to perform
secondary analysis. To perform this analysis, the original
data sets were collated, and audio feature analysis and ex-
traction was performed.

Because each of the three data sets are related to trans-
forming or manipulating audio and the corresponding se-
mantic terms, the authors of this paper performed analysis
of the data based on how each semantic descriptor trans-
forms a set of audio features. This approach was inspired
by [7].

The SAFE data set [30] relates a set of semantic terms
to the corresponding effect parameter settings and audio
features extracted both before and after the audio effect
processing. The original audio content and audio effect pro-
cessing was collected for both the MEDS [3] and SocialFX
data sets [1]. In the case of MEDS, this audio transform
was the full mixing process, so the original audio was de-
fined as the direct sum of all audio stems. The purpose of
this approach was to relate the associated semantic terms
to the audio transformation. This approach was designed to
reveal insight into how the audio changes, because seman-
tic terms are all relative to the original audio content and
context [40].

J. Audio Eng. Soc., Vol. 70, No. 7/8, 2022 July/August

Table 5. Number of audio samples per source data set.

Data Set No. Samples
SocialFX 23,324
SAFE 10,347
MEDS 6,740

MEDS = Mix Evaluation Data Set.

Table 6. Number of audio samples per audio effect.

Audio Effect No. Samples
Reverb 21,236
Compressor 6,847

Mix 6,740
Equalizer 4,854
Distortion 734

The combined three data sets consist of 40,411 audio
samples labelled with 6,247 different descriptors, using
five different audio effects. The number of individual au-
dio samples present in each data set is presented in Table
5. The number of terms associated with each audio effect
is presented in Table 6. With over 23,000 individual audio
samples, the SocialFX data set contributes the largest pro-
portion of the combined data set, more than double that of
SAFE and over three times that of MEDS. Reverb is the
most commonly used audio effect, and distortion is the least
common, because this effect is only present in the SAFE
data set. Mix represented the full mixing process with all
possible audio effects included in this process.

Audio feature analysis was performed using the LibX-
tract library [41], in line with the SAFE data set. This pro-
cess calculated 960 different audio features.

For further analysis of the semantic descriptors used, a
Porter stemmer [42] was used to reduce each of the semantic
terms to their core word, thereby removing differing end-
ings while retaining the core semantic meaning of the word
[30]. Based on this, a list of the most commonly occurring
terms and their number of occurrences per audio effect and
per data set can be seen in Tables 7 and 8, respectively. The
list of stemmed words is limited to those that occur in all
data sets for each comparison.
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Table 7. The 21 most commonly used semantic descriptors and
the number of occurrences of each term in each audio effect.
Words are stemmed with suffixes stripped.

Reverb Compressor Equalizer Distortion Mix Total

Total 21,236 6,847 4,854 734 6,740 40,411
Warm 524 151 738 23 70 1,506
Bright 61 45 628 4 254 992
Loud 406 70 28 4 2 510
Muffl 294 48 6 1 130 479
Soft 167 50 30 5 108 360
Deep 260 16 15 4 14 309
Big 167 17 5 2 44 235
Harsh 46 9 24 4 134 217
Sharp 84 24 12 2 74 196
Strong 96 20 6 2 56 180
Smooth 100 34 17 6 14 171
Tinni 109 15 19 2 18 163
Metal 99 15 3 4 8 129
Cold 51 7 34 2 16 110
Vocal 17 49 29 2 2 99
Boomi 24 2 13 4 46 89
Crisp 42 25 10 2 10 89
Heavi 43 5 15 3 22 88
Hard 33 17 11 6 14 81
Punch 3 12 5 2 54 76
Subtl 14 23 1 1 14 53
Fuzzi 26 15 1 8 2 52
Kick 2 30 13 2 2 49

Table 7 shows that the term warm is one of the most
occurring terms overall, also appearing as the highest oc-
curring term in all effects except the mix. Terms such as
muffl (from muffled) and soft are very prominent in the
reverb, compressor, and mix terms. Bright seems to be par-
ticularly related to equalizer and mix but less relevant to
reverb and compression when compared to other terms.

Table 8 demonstrates that the term warm is the most
common term in both the SocialFX and SAFE data sets.
Bright is the most commonly used term within the MEDS
and the second-most term in the SAFE data set. Both warm
and bright are the two most commonly used terms across
all three data sets. The MEDS data set includes a number
of terms that are less common in both SAFE and SocialFX,
such as thin, clear, and muddi.

4 META-ANALYSIS

The three combined individual data sets were then eval-
vated further. To understand the impact the audio effect
has on its raw audio input, more detailed analysis was per-
formed. Following an approach similar to that used in [7],
the set of audio features were extracted, both before and
after the audio effect processing has taken place, using the
LibXtract library [41]. This provides a delta audio fea-
ture representation of the audio effect processing, by taking
the difference between the pre-audio and post-audio effect
features. This delta audio feature representation is used be-
cause audio processing that takes place may depend heavily
on the input audio signal and context [43, 39].

To better represent the large number of audio features in
a smaller dimensional space, principal component analysis

556

REVIEW PAPERS

Table 8. The 36 most commonly used semantic descriptors and
the number of occurrences of each term in each data set.

Term MEDS SAFE SocialFX Total
Warm 70 811 625 1,506
Bright 254 649 89 992
Loud 2 12 496 510
Muffl 130 1 348 479
Distant 18 11 436 465
Spaciou 6 4 427 437
Clear 194 21 179 394
Soft 108 34 218 360
Thin 318 10 16 344
Deep 14 22 273 309
Church 2 6 248 256
Dark 152 11 92 255
Big 44 18 173 235
Muddi 174 13 46 233
Distort 2 4 212 218
Harsh 134 14 69 217
Bass 4 49 153 206
Sharp 74 9 113 196
Dull 114 5 75 194
Strong 56 8 116 180
Full 36 22 121 179
Nice 2 28 147 177
Hollow 12 10 153 175
Smooth 14 35 122 171
Flat 126 5 33 164
Tinni 18 15 130 163
Cool 6 11 143 160
Mute 2 1 136 139
Quiet 20 6 107 133
Metal 8 14 107 129
Presenc 118 7 1 126
Live 12 5 103 120
Open 26 2 90 118
Close 42 4 67 113
Cold 16 6 88 110
Punchi 52 48 2 102

MEDS = Mix Evaluation Data Set.

(PCA) was performed, reducing the dimensionality from
960 to 6 dimensions while still representing 97.6% of the
variance in the data set, in an approach similar to [2]. From
this point, the number of terms used was reduced to the 36
terms that occurred in all data sets, to ensure that each data
set had representation across all terms and to remove single
terms or sources of noise.

Using this PCA feature representation, the effectiveness
of this approach and similarity of semantic terms were cal-
culated by finding the Ward linkage distance between each
of the semantic terms, as proposed in [2]. The clustering of
semantic terms can be seen in Fig. 5.

Upon visual inspection of the terms that are grouped
together, it can be seen that there are a number of cases that
are intuitive and make sense. The terms tinni and metal are
grouped together, as are big, full, strong, and hard. Another
group of light, smooth, cold, quiet, crisp, and cool makes
intuitive sense, in terms of what would be expected from
those semantic terms in a music production setting. Terms
such as bright, thin, warm, and room tend to have less
similarity to any other terms, but that could be because of
the high number of occurrences of those terms in certain
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Fig. 5. The clustering of semantic terms across all data sets, calcu-
lated as the Ward linkage distance between principal component
analysis (PCA) of the audio feature deltas.

subsets of the data, such that they dominate their own audio
feature space.

To better investigate the agreement between each of these
semantic terms, an agreement score is calculated for each
term, using Eq. (1), taken from [26], as discussed in SEC.
2.1. This agreement score can be interpreted as the mean
variance across all PCA audio feature dimensions that is
normalized by the number of occurrences of the term. It is
expected that higher occurrences of terms would produce
a higher variance, so a higher agreement would be a large
number of terms that produce a very low variance over
the audio feature representation, whereas a low agreement
would be a low number of terms that produce a higher vari-
ance in the audio feature domain. These agreement scores
are presented across each data set in Fig. 6 and across each
audio effect in Fig. 7, and in both cases, the scores are
arranged in terms of highest to lowest agreement over the
entire combined data set.

4.1 The Agreement of Semantic Terms

The agreement for each term in the combined data set
was calculated with Eq. (2). This is then compared to the
agreement score for each term within each individual data
set. The results are presented in Fig. 6. These results show
the highest agreement between terms such as distant and

J. Audio Eng. Soc., Vol. 70, No. 7/8, 2022 July/August

SEMANTIC META-STUDY

deep, and the results show that both of these terms have
high agreement, particularly within the SocialFX data set.
Both the terms warm and dark stand out when there is very
high agreement of the term within the SocialFX data set,
but when combined with other data sets, the overall agree-
ment decreases. This demonstrates that some other data sets
must disagree with the transformation that creates a warm
or dark sound. In general, the SocialFX data set has the
highest agreement across most terms, indicating that there
is generally high agreement within this data set, whereas
the MEDS data set generally has a lower agreement. Only
in the cases of thin and tight is there higher agreement in
the MEDS data set when compared with the SocialFX data
set. The SocialFX data set also has higher agreement for
every single term than the SAFE data set.

In general, SocialFX has a higher agreement score,
and SAFE and MEDS are comparable on their agreement
scores, with a few cases in which they differ considerably,
such as clear, strong, thin, and harsh. This is most likely
because of the SocialFX data set being constructed on just
four different audio sample recordings, with individual au-
dio effects applied, whereas the SAFE data set uses any
audio sample the user wishes to select, the MEDS data
set is constructed by a number of highly different songs,
and the audio processing in a mix is considerably higher in
complexity than a single audio effect.

The terms warm and dark both have very high agree-
ment within the SocialFX data, but the combined agree-
ment scores are lower. This would suggest that the MEDS
and SAFE data sets disagree on the meaning of the terms
when compared with SocialFX. For terms such as distant
and clear, including the SAFE and MEDS data has negligi-
ble impact on the agreement score. This would suggest that
all three data sets agree with the definition of these terms,
in terms of the sonic transformation taking place.

Fig. 7 shows the agreement for each term in the combined
data set, which was calculated with Eq. (2), compared with
the agreement score for each term within each audio effect
over the combined data source. This plot contains fewer
terms, because only terms that existed in all five types of
effects (compression, distortion, equalization, reverb, and
mix) were included in this plot. The plot is sorted by the
overall agreement when all audio effects are combined. In
general, reverb consistently has the highest agreement score
for all terms, sometimes giving a higher agreement than the
combined audio effects, in the case of deep and warm. This
could be because of the reverb effect having a considerably
larger number of audio samples associated with it, at over
21,000 audio samples, which individually makes up over
52% of the total data set.

The equalizer audio effect has a high level of agreement
for terms such as soft, cold, warm, and bright. Of these,
soft, warm, and bright also have high levels of agreement
for the mix effect. There is generally very low agreement
for distortion terms, with the highest agreement being for
the term warm, which also has the highest agreement for
reverb effects and for the compressor. There is very high
agreement with the terms soft for both the equalizer and
compressor, and in both cases, these terms also have a
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Fig. 6. The level of agreement of a term within the feature trans-
form space, by data set, sorted by agreement score of all data
sets combined, with highest agreement at the top. MEDS = Mix
Evaluation Data Set.

high overall agreement, which suggests there is general
agreement between the audio effects and within each audio
effect individually.

Overall, for the term bright, each individual effect has
a strong agreement score; however, when the audio effect
data are combined, the agreement score does not increase.
This suggests that the individual data sets agree with them-
selves but do not agree with data sets for other audio effects.
A similar situation can be seen with terms such as warm,
in which the reverb effect has a very high agreement score;
although when combined with other audio effects, the com-
bined agreement score decreases. This suggests that the au-
dio effect used will impact the meaning of a semantic audio
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Fig. 7. The level of agreement of a term within the feature trans-
form space, by effect, sorted by agreement score of all data sets
combined, with highest agreement at the top.

term, and the same term will have a different meaning when
used in the context of a different audio effect.

4.2 Semantic Term Similarity

The audio feature PCA representation calculated per
term, from SEC. 4, was used to calculate the mean average
feature for each term. From this, a Pearson’s correlation is
performed to identify how similar the mean feature repre-
sentation of each term is between the different data set pairs,
which is shown in Fig. 8. Similarly, the mean average PCA
audio feature representation of each term was calculated,
and a Pearson’s correlation was performed to identify the
correlation between different audio effects with each indi-
vidual term, which is shown in Fig. 9. These visualizations
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Fig. 9. Pearson’s correlation between audio transformation of each
semantic term, comparing each audio effect.

identify which semantic terms are similar across different
data sets and audio effects.

Fig. 8 shows that there are no strong correlations be-
tween different data sets. Only the comparison between
MEDS and SAFE data sets produce moderate correlations,
where abs(r) > 0.5. The terms boomi, distant, dreami, hol-
low, quiet, subtl, and thin all produce moderately posi-
tive correlations, where 0.5 < abs(r) < 0.7. In the case
of these seven terms, both MEDS and SAFE reasonably
agree on the audio transformation that takes place to de-
scribe these semantic terms. Thin, quiet, and dreami are
the three highest correlations of terms. Thin also had the
highest agreement score within the MEDS, in which the
agreement score was higher than in SocialFX. Both thick
and hard have almost no correlation between each other,
and both had a relatively low agreement score too, so
there is very little by way of agreement of terms for thick
and hard.
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The correlation between semantic terms by audio effect is
visualized in Fig. 9. It can be seen that, in general, semantic
terms associated with the mix effect and distortion effect
correlate with each other quite strongly. Some of the terms
have a high correlation [abs(r) > 0.7], and only the terms
bright, crunchi, deep, harsh, and strong do not have at least
a moderate correlation. The term boomi has a moderate
correlation between mix and distortion, mix and equalizer,
and distortion and equalizer, indicating that there is high
agreement for this term between the three different audio
effects. Other than that, the correlations between different
audio effects are generally very low regarding the particular
terms used. It can therefore be demonstrated that, with the
exception of mix and distortion, individual semantic terms
used will differ greatly depending on the audio effect that
is used.

5 DISCUSSION

In this paper, three of the largest semantic music pro-
duction data sets have been combined and compared to one
another. The semantic terms are evaluated in terms of their
direct modification to the audio attributes they represent.

The SocialFX data set tends to produce higher agreement
scores than the MEDS and SAFE data sets. This may be be-
cause of some artefacts of the data set. In the creation of this
data set, all semantic terms were evaluated on four audio
samples, and audio effect ranges were limited in their mod-
ification to the source audio, (e.g., =4 dB on the equalizer).
Furthermore, it is suspected that, in general, the SocialFX
participants had less music production experience.

The SAFE data set produced a varied agreement over
a range terms, with most agreement on the terms warm
and bright. Within this study, the audio effect parameter
ranges are much larger, and participants were given free
reign to modify and control parameters, which resulted
in a number of more extreme modifications to the audio
content. Participants were also allowed to use any audio
content they wanted and could submit any term they liked,
which resulted in this data set being very noisy with large
extremes in the data.

The MEDS data set represented the production and eval-
uation of music production mixes. The mix category is
considerably more complex audio processing than any in-
dividual audio effect, and the parameters of the mix are
still not fully understood by modern artificial intelligence
mixing systems [44]. The MEDS data set used a smaller
number of fixed tracks, with a large range of audio pro-
cessing and thus permutations of the music production.
The participants were all music production students or
experts, so there is a guarantee of a benchmark quality,
which cannot be said regarding the other data sets. Fur-
thermore, it is not clear if a mono-sum of a series of au-
dio tracks compared with a full mix-down is a reason-
able comparison for an audio processing chain. This was
used to represent the full mixing process; however, there
may be alternative ways to review and improve this audio
processing representation.
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It has been identified that the SocialFX data set tends
to have the highest agreement over all the audio effects
and terms, which could be an artefact of the small musical
variation size or because the experimental design was more
strict than both SAFE and MEDS, which both gave partici-
pants a lot more independent control to modify parameters
and add terms as they saw fit. There is higher correlation
between terms in the MEDS and SAFE data sets, when
compared with the SocialFX, and in audio effects, there is
highest correlation between distortion and full-mix effects.
It is suspected that the correlation between mix and distor-
tion is because each of them only appear in one data set and
thus represent the overall correlation between MEDS and
SAFE.

Overall, there is high agreement on terms, such as “dis-
tant” and “clear,” independent of the audio effect or data
set used, with less agreement on well-known terms, such as
“bright.” It has also been shown that semantic terms vary
greatly based on the audio effect being used to envisage
the semantic term and that a “warm” equalizer will be very
different from a “warm” distortion effect.

6 CONCLUSION

This article has presented an approach to collate a number
of different data sets relating to music production mixing
and audio effect semantics. The three largest known se-
mantic data sets were collated and compared in a number
of different ways to expose the commonalities and conflicts
of these approaches.

It has been shown that each of the data sets can be com-
bined to provide a greater insight into the semantics of
music production. A variety of terms is used across a range
of audio effects, and the limited agreements of terms across
audio effects suggest that semantic terms vary depending
on the audio effect used and the musical content and context
of the piece being used.

Furthermore, the experimental designs of the different
studies provide useful insights into the ways in which fur-
ther studies on semantics can be conducted. Free-form stud-
ies in which participants select parameters and name them
are very open but can result in very noisy results, which
make is difficult to produce any considerable agreement,
whereas highly specified studies with pre-selected param-
eters can force participants down a very specific path and
have the danger of limiting the generalizability of the study.
Clearly, there is a potential for some middle-ground ap-
proach, with a larger number of audio samples but limited
set of terms than can apply, for future music production
semantic research.

The results of this combined study demonstrate that se-
mantic terms used to describe music production content are
directly related to the type of processing applied. The type
of audio processing will greatly impact the use of different
semantic terms, and there is no universal semantic language
for describing audio production, but different audio effects
will produce different audio transformations that can inde-
pendently be associated with given semantic terms.
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